Menu

Executive Programs

Workshops

Projects

Blogs

Careers

Placements

Student Reviews


For Business


More

Academic Training

Informative Articles

Find Jobs

We are Hiring!


All Courses

Choose a category

Loading...

All Courses

All Courses

logo

Loading...
Executive Programs
Workshops
For Business

Success Stories

Placements

Student Reviews

More

Projects

Blogs

Academic Training

Find Jobs

Informative Articles

We're Hiring!

phone+91 9342691281Log in
  1. Home/
  2. Sushant Ovhal/
  3. Supervised Learning - Classification Week 8 Challenge

Supervised Learning - Classification Week 8 Challenge

1) Apply knn to the “Surface defects in stainless steel plates” and identify the difference KNN is a simple algorithm, based on the local minimum of the target function which is used to learn an unknown function of desired precision and accuracy. The algorithm also finds the neighborhood of an unknown input,…

    • Sushant Ovhal

      updated on 16 Oct 2022

    1) Apply knn to the “Surface defects in stainless steel plates” and identify the difference

    KNN is a simple algorithm, based on the local minimum of the target function which is used to learn an unknown function of desired precision and accuracy. The algorithm also finds the neighborhood of an unknown input, its range or distance from it, and other parameters. It’s based on the principle of “information gain”—the algorithm finds out which is most suitable to predict an unknown value. 

    KNN is widely known as an ML algorithm that doesn’t need any training on data. This is much different from eager learning approaches that rely on a training dataset to perform predictions on unseen data. With KNN, you don’t need a training phase at all.

     import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sn
    import scipy.stats as stats​
    steels= pd.read_csv('faults.csv')
    steels.hist(figsize=(30,30))
    plt.show()
     
     
     
     
    corrmat = steels.corr()
    f, ax = plt.subplots(figsize=(10,10))
    sn.heatmap(corrmat, ax=ax, cmap="YlGnBu", linewidths = 0.1)
    plt.show() 
    pd.set_option('display.max_columns', None)
    factors=steels.iloc[:, 0:27]
    df=steels.iloc[:, 27:34]
    factors_zscore = stats.zscore(factors)
    df['Class']=0
    df['DefType']=''
    df.loc[df.Pastry==1,'Class'] = 
    df.loc[df.Z_Scratch==1,'Class'] = 2
    df.loc[df.K_Scatch==1,'Class'] = 3
    df.loc[df.Stains==1,'Class'] = 4
    df.loc[df.Dirtiness==1,'Class'] = 5
    df.loc[df.Bumps==1,'Class'] = 6
    df.loc[df.Other_Faults==1,'Class'] = 7
    df.loc[df.Pastry==1,'DefType'] = 'Pastry'
    df.loc[df.Z_Scratch==1,'DefType'] = 'Z_Scratch'
    df.loc[df.K_Scatch==1,'DefType'] = 'K_Scatch'
    df.loc[df.Stains==1,'DefType'] = 'Stains'
    df.loc[df.Dirtiness==1,'DefType'] = 'Dirtiness'
    df.loc[df.Bumps==1,'DefType'] = 'Bumps'
    df.loc[df.Other_Faults==1,'DefType'] = 'Other_Faults'
    ​
    df.drop(['Pastry','Z_Scratch','K_Scatch','Stains','Dirtiness','Bumps','Other_Faults','DefType'], axis=1, inplace=True)
    print(df.describe())
    print(df.head())
    ​
    print(df)
    print(factors)
    print(factors.describe())
    print(factors.head())
                 Class
    count  1941.000000
    mean      4.841319
    std       2.144175
    min       1.000000
    25%       3.000000
    50%       6.000000
    75%       7.000000
    max       7.000000
       Class
    0      1
    1      1
    2      1
    3      1
    4      1
          Class
    0         1
    1         1
    2         1
    3         1
    4         1
    ...     ...
    1936      7
    1937      7
    1938      7
    1939      7
    1940      7
    
    [1941 rows x 1 columns]
          X_Minimum  X_Maximum  Y_Minimum  Y_Maximum  Pixels_Areas  X_Perimeter  \
    0            42         50     270900     270944           267           17   
    1           645        651    2538079    2538108           108           10   
    2           829        835    1553913    1553931            71            8   
    3           853        860     369370     369415           176           13   
    4          1289       1306     498078     498335          2409           60   
    ...         ...        ...        ...        ...           ...          ...   
    1936        249        277     325780     325796           273           54   
    1937        144        175     340581     340598           287           44   
    1938        145        174     386779     386794           292           40   
    1939        137        170     422497     422528           419           97   
    1940       1261       1281      87951      87967           103           26   
    
          Y_Perimeter  Sum_of_Luminosity  Minimum_of_Luminosity  \
    0              44              24220                     76   
    1              30              11397                     84   
    2              19               7972                     99   
    3              45              18996                     99   
    4             260             246930                     37   
    ...           ...                ...                    ...   
    1936           22              35033                    119   
    1937           24              34599                    112   
    1938           22              37572                    120   
    1939           47              52715                    117   
    1940           22              11682                    101   
    
          Maximum_of_Luminosity  Length_of_Conveyer  TypeOfSteel_A300  \
    0                       108                1687                 1   
    1                       123                1687                 1   
    2                       125                1623                 1   
    3                       126                1353                 0   
    4                       126                1353                 0   
    ...                     ...                 ...               ...   
    1936                    141                1360                 0   
    1937                    133                1360                 0   
    1938                    140                1360                 0   
    1939                    140                1360                 0   
    1940                    133                1360                 1   
    
          TypeOfSteel_A400  Steel_Plate_Thickness  Edges_Index  Empty_Index  \
    0                    0                     80       0.0498       0.2415   
    1                    0                     80       0.7647       0.3793   
    2                    0                    100       0.9710       0.3426   
    3                    1                    290       0.7287       0.4413   
    4                    1                    185       0.0695       0.4486   
    ...                ...                    ...          ...          ...   
    1936                 1                     40       0.3662       0.3906   
    1937                 1                     40       0.2118       0.4554   
    1938                 1                     40       0.2132       0.3287   
    1939                 1                     40       0.2015       0.5904   
    1940                 0                     80       0.1162       0.6781   
    
          Square_Index  Outside_X_Index  Edges_X_Index  Edges_Y_Index  \
    0           0.1818           0.0047         0.4706         1.0000   
    1           0.2069           0.0036         0.6000         0.9667   
    2           0.3333           0.0037         0.7500         0.9474   
    3           0.1556           0.0052         0.5385         1.0000   
    4           0.0662           0.0126         0.2833         0.9885   
    ...            ...              ...            ...            ...   
    1936        0.5714           0.0206         0.5185         0.7273   
    1937        0.5484           0.0228         0.7046         0.7083   
    1938        0.5172           0.0213         0.7250         0.6818   
    1939        0.9394           0.0243         0.3402         0.6596   
    1940        0.8000           0.0147         0.7692         0.7273   
    
          Outside_Global_Index  LogOfAreas  Log_X_Index  Log_Y_Index  \
    0                      1.0      2.4265       0.9031       1.6435   
    1                      1.0      2.0334       0.7782       1.4624   
    2                      1.0      1.8513       0.7782       1.2553   
    3                      1.0      2.2455       0.8451       1.6532   
    4                      1.0      3.3818       1.2305       2.4099   
    ...                    ...         ...          ...          ...   
    1936                   0.0      2.4362       1.4472       1.2041   
    1937                   0.0      2.4579       1.4914       1.2305   
    1938                   0.0      2.4654       1.4624       1.1761   
    1939                   0.0      2.6222       1.5185       1.4914   
    1940                   0.0      2.0128       1.3010       1.2041   
    
          Orientation_Index  Luminosity_Index  SigmoidOfAreas  
    0                0.8182           -0.2913          0.5822  
    1                0.7931           -0.1756          0.2984  
    2                0.6667           -0.1228          0.2150  
    3                0.8444           -0.1568          0.5212  
    4                0.9338           -0.1992          1.0000  
    ...                 ...               ...             ...  
    1936            -0.4286            0.0026          0.7254  
    1937            -0.4516           -0.0582          0.8173  
    1938            -0.4828            0.0052          0.7079  
    1939            -0.0606           -0.0171          0.9919  
    1940            -0.2000           -0.1139          0.5296  
    
    [1941 rows x 27 columns]
             X_Minimum    X_Maximum     Y_Minimum     Y_Maximum   Pixels_Areas  \
    count  1941.000000  1941.000000  1.941000e+03  1.941000e+03    1941.000000   
    mean    571.136012   617.964451  1.650685e+06  1.650739e+06    1893.878413   
    std     520.690671   497.627410  1.774578e+06  1.774590e+06    5168.459560   
    min       0.000000     4.000000  6.712000e+03  6.724000e+03       2.000000   
    25%      51.000000   192.000000  4.712530e+05  4.712810e+05      84.000000   
    50%     435.000000   467.000000  1.204128e+06  1.204136e+06     174.000000   
    75%    1053.000000  1072.000000  2.183073e+06  2.183084e+06     822.000000   
    max    1705.000000  1713.000000  1.298766e+07  1.298769e+07  152655.000000   
    
            X_Perimeter   Y_Perimeter  Sum_of_Luminosity  Minimum_of_Luminosity  \
    count   1941.000000   1941.000000       1.941000e+03            1941.000000   
    mean     111.855229     82.965997       2.063121e+05              84.548686   
    std      301.209187    426.482879       5.122936e+05              32.134276   
    min        2.000000      1.000000       2.500000e+02               0.000000   
    25%       15.000000     13.000000       9.522000e+03              63.000000   
    50%       26.000000     25.000000       1.920200e+04              90.000000   
    75%       84.000000     83.000000       8.301100e+04             106.000000   
    max    10449.000000  18152.000000       1.159141e+07             203.000000   
    
           Maximum_of_Luminosity  Length_of_Conveyer  TypeOfSteel_A300  \
    count            1941.000000         1941.000000       1941.000000   
    mean              130.193715         1459.160227          0.400309   
    std                18.690992          144.577823          0.490087   
    min                37.000000         1227.000000          0.000000   
    25%               124.000000         1358.000000          0.000000   
    50%               127.000000         1364.000000          0.000000   
    75%               140.000000         1650.000000          1.000000   
    max               253.000000         1794.000000          1.000000   
    
           TypeOfSteel_A400  Steel_Plate_Thickness  Edges_Index  Empty_Index  \
    count       1941.000000            1941.000000  1941.000000  1941.000000   
    mean           0.599691              78.737764     0.331715     0.414203   
    std            0.490087              55.086032     0.299712     0.137261   
    min            0.000000              40.000000     0.000000     0.000000   
    25%            0.000000              40.000000     0.060400     0.315800   
    50%            1.000000              70.000000     0.227300     0.412100   
    75%            1.000000              80.000000     0.573800     0.501600   
    max            1.000000             300.000000     0.995200     0.943900   
    
           Square_Index  Outside_X_Index  Edges_X_Index  Edges_Y_Index  \
    count   1941.000000      1941.000000    1941.000000    1941.000000   
    mean       0.570767         0.033361       0.610529       0.813472   
    std        0.271058         0.058961       0.243277       0.234274   
    min        0.008300         0.001500       0.014400       0.048400   
    25%        0.361300         0.006600       0.411800       0.596800   
    50%        0.555600         0.010100       0.636400       0.947400   
    75%        0.818200         0.023500       0.800000       1.000000   
    max        1.000000         0.875900       1.000000       1.000000   
    
           Outside_Global_Index   LogOfAreas  Log_X_Index  Log_Y_Index  \
    count           1941.000000  1941.000000  1941.000000  1941.000000   
    mean               0.575734     2.492388     1.335686     1.403271   
    std                0.482352     0.788930     0.481612     0.454345   
    min                0.000000     0.301000     0.301000     0.000000   
    25%                0.000000     1.924300     1.000000     1.079200   
    50%                1.000000     2.240600     1.176100     1.322200   
    75%                1.000000     2.914900     1.518500     1.732400   
    max                1.000000     5.183700     3.074100     4.258700   
    
           Orientation_Index  Luminosity_Index  SigmoidOfAreas  
    count        1941.000000       1941.000000     1941.000000  
    mean            0.083288         -0.131305        0.585420  
    std             0.500868          0.148767        0.339452  
    min            -0.991000         -0.998900        0.119000  
    25%            -0.333300         -0.195000        0.248200  
    50%             0.095200         -0.133000        0.506300  
    75%             0.511600         -0.066600        0.999800  
    max             0.991700          0.642100        1.000000  
       X_Minimum  X_Maximum  Y_Minimum  Y_Maximum  Pixels_Areas  X_Perimeter  \
    0         42         50     270900     270944           267           17   
    1        645        651    2538079    2538108           108           10   
    2        829        835    1553913    1553931            71            8   
    3        853        860     369370     369415           176           13   
    4       1289       1306     498078     498335          2409           60   
    
       Y_Perimeter  Sum_of_Luminosity  Minimum_of_Luminosity  \
    0           44              24220                     76   
    1           30              11397                     84   
    2           19               7972                     99   
    3           45              18996                     99   
    4          260             246930                     37   
    
       Maximum_of_Luminosity  Length_of_Conveyer  TypeOfSteel_A300  \
    0                    108                1687                 1   
    1                    123                1687                 1   
    2                    125                1623                 1   
    3                    126                1353                 0   
    4                    126                1353                 0   
    
       TypeOfSteel_A400  Steel_Plate_Thickness  Edges_Index  Empty_Index  \
    0                 0                     80       0.0498       0.2415   
    1                 0                     80       0.7647       0.3793   
    2                 0                    100       0.9710       0.3426   
    3                 1                    290       0.7287       0.4413   
    4                 1                    185       0.0695       0.4486   
    
       Square_Index  Outside_X_Index  Edges_X_Index  Edges_Y_Index  \
    0        0.1818           0.0047         0.4706         1.0000   
    1        0.2069           0.0036         0.6000         0.9667   
    2        0.3333           0.0037         0.7500         0.9474   
    3        0.1556           0.0052         0.5385         1.0000   
    4        0.0662           0.0126         0.2833         0.9885   
    
       Outside_Global_Index  LogOfAreas  Log_X_Index  Log_Y_Index  \
    0                   1.0      2.4265       0.9031       1.6435   
    1                   1.0      2.0334       0.7782       1.4624   
    2                   1.0      1.8513       0.7782       1.2553   
    3                   1.0      2.2455       0.8451       1.6532   
    4                   1.0      3.3818       1.2305       2.4099   
    
       Orientation_Index  Luminosity_Index  SigmoidOfAreas  
    0             0.8182           -0.2913          0.5822  
    1             0.7931           -0.1756          0.2984  
    2             0.6667           -0.1228          0.2150  
    3             0.8444           -0.1568          0.5212  
    4             0.9338           -0.1992          1.0000  
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(factors_zscore, df, test_size = 0.2, random_state=0)
    knn = KNeighborsClassifier(n_neighbors=7)
    knn.fit(X_train, y_train)
    # Predict on dataset which model has not seen before
    print(knn.predict(X_test))
    # Calculate the accuracy of the model
    print('score = ',knn.score(X_test, y_test))
    ​
    neighbors = np.arange(1, 15)
    train_accuracy = np.empty(len(neighbors))
    test_accuracy = np.empty(len(neighbors))
    [4 3 3 2 6 5 3 6 1 7 7 7 7 7 6 7 3 7 5 7 2 1 6 7 7 3 3 2 7 1 3 6 1 3 6 7 7
     6 7 3 7 2 3 2 6 7 3 6 3 7 6 3 3 2 4 4 6 7 7 2 3 4 6 6 6 6 3 6 2 3 2 7 3 2
     6 6 5 3 7 6 1 1 6 3 6 1 3 1 7 1 7 6 7 7 5 7 1 7 7 4 7 3 7 7 3 7 3 2 7 1 6
     3 1 6 2 7 6 3 7 7 6 6 7 6 1 4 7 7 7 6 2 5 7 6 3 4 7 7 7 7 6 7 6 3 1 2 7 5
     6 7 7 6 6 7 7 6 6 2 7 7 7 7 1 3 7 6 5 7 3 7 6 3 3 7 3 4 7 2 4 3 3 3 3 3 4
     7 5 7 3 3 2 6 7 7 6 1 6 2 3 7 7 2 1 3 3 3 6 2 6 6 3 2 6 7 6 3 3 3 7 6 7 6
     2 1 2 4 7 6 1 3 5 6 7 7 7 7 3 3 6 6 6 3 6 2 3 7 4 2 3 6 7 3 7 6 3 6 6 6 2
     6 3 3 7 6 6 6 7 2 6 3 6 6 3 2 6 3 6 2 7 6 2 7 7 6 6 6 3 6 2 7 7 7 3 7 6 6
     6 6 6 7 3 4 3 2 7 1 3 6 7 1 6 6 7 7 7 7 7 3 7 1 6 6 6 7 1 7 1 7 7 7 6 7 2
     6 4 2 1 2 7 6 6 3 1 3 7 6 6 6 7 3 3 7 1 2 7 5 4 7 2 7 3 2 7 2 2 3 3 2 7 7
     2 7 7 6 7 6 6 6 7 6 6 7 6 2 6 7 1 7 7]
    score =  0.7377892030848329
    
     
    plt.plot(neighbors, test_accuracy, label = 'Testing dataset Accuracy')
    plt.plot(neighbors, train_accuracy, label = 'Training dataset Accuracy')
    plt.legend()
    plt.xlabel('n_neighbors')
    plt.ylabel('Accuracy')
    plt.show()
    Y_predict = knn.predict(X_test)
    ​
    from sklearn import metrics
    cm = metrics.confusion_matrix(y_test, Y_predict)
    print(cm)
    print(cm.shape)
    print(type(cm))
    print(cm[0, 0])
    ​
    import seaborn as sn
    plt.figure(figsize=(10, 7))
    sn.heatmap(cm, annot=True)
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.title('Confusion matrix: knn')
    plt.show()
     
     
     
     
    [[12  3  0  0  1 12 12]
     [ 0 34  0  0  0  2  3]
     [ 0  0 70  2  0  4  2]
     [ 0  0  0 11  0  1  0]
     [ 0  0  0  0  8  1  1]
     [ 1  5  0  1  1 57 16]
     [ 6  2  4  1  0 32 84]]
    (7, 7)
    <class 'numpy.ndarray'>
    12
    
     
     
    from sklearn import svm
    clf = svm.SVC(kernel='linear') 
    clf.fit(X_train, y_train)
    Y_predict_svm  = clf.predict(X_test)
    ​
    cm = metrics.confusion_matrix(y_test, Y_predict_svm)
    print(cm)
    print(cm.shape)
    print(type(cm))
    print(cm[0, 0])
    ​
    import seaborn as sn
    plt.figure(figsize=(10, 7))
    sn.heatmap(cm, annot=True)
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.title('Confusion matrix: SVM')
    plt.show()
     
    [[23  2  0  1  0  5  9]
     [ 0 36  0  0  0  1  2]
     [ 0  0 70  2  0  3  3]
     [ 0  0  0 11  0  0  1]
     [ 0  0  0  0  5  0  5]
     [ 5  3  0  0  0 47 26]
     [ 5  2  1  1  1 26 93]]
    (7, 7)
    <class 'numpy.ndarray'>
    23
    
     
     
     
    from sklearn.tree import DecisionTreeClassifier
    clf_tree = DecisionTreeClassifier(criterion = "entropy", random_state = 100, max_depth = 3, min_samples_leaf = 5)
    # Performing training
    clf_tree.fit(X_train, y_train)
    Y_predict_tree = clf_tree.predict(X_test)
    ​
    cm = metrics.confusion_matrix(y_test, Y_predict_tree)
    print(cm)
    print(cm.shape)
    print(type(cm))
    print(cm[0, 0])
    ​
    import seaborn as sn
    plt.figure(figsize=(10, 7))
    sn.heatmap(cm, annot=True)
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.title('Confusion matrix: Decision tree')
    plt.show()
    ​
     
     
     
    [[ 0  0  0  0  0 15 25]
     [ 0  0  1  0  0 36  2]
     [ 0  0 62  2  0  1 13]
     [ 0  0  0 11  0  0  1]
     [ 0  0  0  0  0  0 10]
     [ 0  0  0  0  0 60 21]
     [ 0  0  0  1  0 46 82]]
    (7, 7)
    <class 'numpy.ndarray'>
    0
    
     
     from sklearn.ensemble import RandomForestClassifier
    clf_rf=RandomForestClassifier(n_estimators = 100, random_state = 0)
    clf_rf.fit(X_train, y_train)
    Y_predict_rf = clf_rf.predict(X_test)
    ​
    cm = metrics.confusion_matrix(y_test, Y_predict_rf)
    print(cm)
    print(cm.shape)
    print(type(cm))
    print(cm[0, 0])
    ​
    import seaborn as sn
    plt.figure(figsize=(10, 7))
    sn.heatmap(cm, annot=True)
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.title('Confusion matrix: Random forest')
    plt.show()
     
    [[ 17   2   0   0   0   6  15]
     [  0  34   0   0   0   0   5]
     [  0   0  73   2   0   1   2]
     [  0   0   0  11   0   0   1]
     [  0   0   0   0  10   0   0]
     [  4   0   0   0   0  47  30]
     [  3   1   0   1   0  23 101]]
    (7, 7)
    <class 'numpy.ndarray'>
    17
    
     
     
    from sklearn.linear_model import LinearRegression
    regr = LinearRegression()
    regr.fit(X_train, y_train)
    Y_predict_reg = regr.predict(X_test)
    ​
    ​
    print('Regression = ', regr.predict(X_test))
    print('knn = ', knn.predict(X_test))
    print('SVM = ', clf.predict(X_test))
    print('Decision tree = ', clf_tree.predict(X_test))
    print('Random forest = ', clf_rf.predict(X_test))
    ​
    ​
    score_lr=regr.score(X_test, y_test)
    print('Score of linear regression = ',score_lr)
    score_knn=knn.score(X_test, y_test)
    print('Score of knn = ',score_knn)
    score_svm=clf.score(X_test, y_test)
    print('Score of SVM = ',score_svm)
    score_tree=clf_tree.score(X_test, y_test)
    print('Score of decision tree = ',score_tree)
    score_rf=clf_rf.score(X_test, y_test)
    print('Score of random forest = ',score_rf)
    ​
     
     
     
    Regression =  [[5.22588405]
     [3.53872548]
     [1.72446934]
     [4.73715225]
     [4.76560934]
     [4.3932702 ]
     [4.74762018]
     [5.8344865 ]
     [3.99686633]
     [5.17305894]
     [4.92404818]
     [6.54047949]
     [5.2341654 ]
     [4.73919863]
     [5.69739848]
     [6.16304004]

    2) What are the pros and cons of knn

    Pros

    1) No Training Period

    KNN modeling does not include a training period as the data itself is a model which will be the reference for future prediction and because of this it is very time efficient in terms of improvising for random modeling on the available data.

    2) Easy Implementation 

    KNN is very easy to implement as the only thing to be calculated is the distance between different points on the basis of data of different features and this distance can easily be calculated using distance formulas such as- Euclidian or Manhattan

    3) As there is no training period thus new data can be added at any time since it won't affect the model.

    4) K-NN is pretty intuitive and simple:

    K-NN algorithm is very simple to understand and equally easy to implement. To classify the new data point K-NN algorithm reads through whole dataset to find out K nearest neighbors.

    5)K-NN has no assumptions:

    K-NN is a non-parametric algorithm which means there are assumptions to be met to implement K-NN. Parametric models like linear regression has lots of assumptions to be met by data before it can be implemented which is not the case with K-NN.

     

    Cons

    1) Does not work well with large datasets as calculating distances between each data instance would be very costly.

    2) Does not work well with high dimensionality as this will complicate the distance calculating process to calculate the distance for each dimension.

    3) Sensitive to noisy and missing data

    4) Feature Scaling 

     Data in all the dimensions should be scaled (normalized and standardized) properly.

    5) K-NN slow algorithm:

    K-NN might be very easy to implement but as dataset grows efficiency or speed of algorithm declines very fast.

    Leave a comment

    Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.

    Please  login to add a comment

    Other comments...

    No comments yet!
    Be the first to add a comment

    Read more Projects by Sushant Ovhal (22)

    Project 1 - Analyzing the Education trends in Tamilnadu

    Objective:

    This dashboard empowers mission driven organizations to harness the power of data visualization for social change. Women are tracked away from science and mathematics throughout their education, limiting their training and options to go into these fields as adults. The data set contains the data of women graduated by years,…

    calendar

    14 Nov 2023 01:32 PM IST

      Read more

      Project 1 - English Dictionary App & Library Book Management System

      Objective:

      Project 1) English dictionary app and Library Book Management system

      calendar

      06 Nov 2023 04:04 PM IST

        Read more

        Project 1 - Implement and deploy CNN model in real-time using python on Fashion MNIST dataset

        Objective:

         Implement and deploy CNN model in real-time using python on Fashion MNIST dataset

        calendar

        20 Dec 2022 07:04 AM IST

          Read more

          Project 2

          Objective:

          Project 2

          calendar

          30 Nov 2022 11:41 AM IST

            Read more

            Schedule a counselling session

            Please enter your name
            Please enter a valid email
            Please enter a valid number

            Related Courses

            coursecard

            Design loads considered on bridges

            Recently launched

            10 Hours of Content

            coursecard

            Design of Steel Superstructure in Bridges

            Recently launched

            16 Hours of Content

            coursecard

            Design for Manufacturability (DFM)

            Recently launched

            11 Hours of Content

            coursecard

            CATIA for Medical Product Design

            Recently launched

            5 Hours of Content

            coursecardcoursetype

            Accelerated Career Program in Embedded Systems (On-Campus) Courseware Partner: IT-ITes SSC nasscom

            Recently launched

            0 Hours of Content

            Schedule a counselling session

            Please enter your name
            Please enter a valid email
            Please enter a valid number

                        Do You Want To Showcase Your Technical Skills?
                        Sign-Up for our projects.